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The validity of the finite-size scaling prediction about the existence of 
logarithmic corrections in the helicity modulus Y of th'ree-dimensional O(n)- 
symmetric order parameter systems in confined geometries is studied for the 
three-dimensional mean spherical model of geometry L 3 d'• ood', 0~<d'<3. 
For a fully finite geometry the general case of dry>0 periodic, da>~0 
antiperiodic, do/> 0 free, and dt ~> 0 fixed (dp + da + do + dl = d, d = 3 ) boundary 
conditions is considered, whereas for film (d '=2)  and cylinder ( d ' = l )  
geometries only the case of antiperiodic and/or periodic boundary conditions is 
investigated. The corresponding expressions for the finite-size scaling function of 
the helicity modulus and its asymptotics in the vicinity, below, and above the 
bulk critical temperature T c and the shifted critical temperature To, L are derived. 
The obtained results are not in agreement with the hypothesis of the existence 
of a log(L) correction term to the finite-size behavior of the helicity modulus in 
the finite-size critical region if d = 3. In the case of film and cylinder geometries 
there are no logarithmic corrections. In the case of a fully finite geometry a 
universal logarithmic correction term _ [(do_ dl)/4~ z + 2ao-1/~2] In L/L is 
obtained only for (T c -  T) L >> In L. 

KEY WORDS: Finite-size scaling; logarithmic corrections; spherical model; 
helicity modulus. 

1. I N T R O D U C T I O N  

T h e  s t a n d a r d  f ini te-size sca l ing  f o r m  for  the  s ingu la r  pa r t  of  the  free ene rgy  

dens i ty  (per  kB T and  pe r  si te)  o f  a h y p e r c u b i c  la t t ice  sys tem wi th  a cha rac -  

ter is t ic  f ini te  size L (where  L is m e a s u r e d  in uni ts  o f  an  a p p r o p r i a t e  
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microscopic length, which here is taken to be the lattice spacing) near the 
critical temperature Tc (of the corresponding bulk, i.e., L = 0o) system is ~1) 

f~i~g ~ L -dX(atL1/~) (1.1) 

where t = ( T -  Tc)/Tc is the reduced temperature, a is a nonuniversal scaling 
factor, X is a universal (usually geometry-dependent) scaling function, 
and v is the correlation length scaling exponent. (For brevity we consider 
the dependence on only one thermodynamic variable.) When nonperiodic 
boundary conditions are imposed on the system there are also "back- 
ground" terms, which depend on the shape of the system and which are 
expected to be of the form 

fbg,~ba(t)+~bd ~(t)/L + . . .  +Oo/Ld + o ( L  a) (1.2) 

where the ~bd term corresponds to the bulk contribution, ~b a_ 1 corresponds 
to the surface one, etc., and the last term in Eq. (1.2) corresponds to the 
corners (or curvature) of the system. (The functions ~bj, j = 0,..., d, are sup- 
posed to be regular at t = 0.) It was argued by Privman (2) (for reviews see 
refs. 3 and 4) that when d is integer, due to the equal exponents of the 1/L a 
"scaling" term [given by Eq. (1.1)] and the corresponding contribution 
from the "background" term [see Eq. (1.2)], one additional so-called 
"resonant" logarithmic term appears: 

fres g U In L / L  d ( 1.3 ) 

where u is a universal amplitude. The mechanism of the emergence of this 
logarithmic term is reminiscent of the one which is anticipated for the 
appearance of a logarithmic specific heat in the bulk system when the 
critical exponent c~ tends to zero: when d passes through integer values, 
"resonant" poles develop in the finite-size scaling function X and in the 
amplitude ~b0, conspiring so that the logarithmic term in Eq. (1.3) emerges. 
In fact such logarithmic terms were derived first by conformal invariance 
arguments (5) at t = 0 in d =  2. (For a review of the results available in d-- 2 
see Ref. 3.) For d >  2 the above predictions were tested in the framework of 
a few exactly soluble models, namely in a Gaussian-type model, (6'7) in the 
constrained monomer-dimer model, (8~ and in the mean spherical model 
with free (9) and fixed (1~ boundary conditions (for short reviews of the 
corresponding results see the introductory parts in refs. 8 and 10). 
Logarithmic corrections were found in the finite-size behavior of the inter- 
facial free energy. (3,v) It was shown, for example (for a general review of 
sizes effects on interracial properties see ref. 3), that in the capillary-wave 
Gaussian-type model the singular part (per k B T) of the interracial free 
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energy density (where the interface is created by applying controlled 
surface fields, fixing its mean position) has the form (7) 

f(interface) ( T . L ) = f d _ I ( T ) + f d _ 2 ( T ) / L  + . . . .  2 a l l n L / L a - ' +  ...  (1.4) singular part', , 

at any fixed T <  T c as L --* oe. As it is shown, a universal logarithmic term 
is again present, even though at any fixed T the functions fk are not univer- 
sal (for more details see ref. 7). An extension of the above ideas to the 
helicity modulus F of O(n)-vector models with n/>2 was proposed by 
Privman.(11)Heuristically, the helicity modulus is the analog of the interface 
tension for O(n)-symmetric systems; for a short discussion on possible 
formal definitions of Y in finite systems, see Section 2 below. In the frame- 
work of the hyperuniversal finite-size scaling it is expected that for dt < d < du 
(where dt = 2 and d, = 4 are the lower and the upper critical dimensions for 
this class of systems, respectively) in a finite system with characteristic 
dimension L the singular part (as L ~ oc) of the helicity modulus [due to 
the hyperscaling the critical exponent of F describing its temperature 
dependence is equal to ( d - 2 )  y(12)] has the form 

]e'singular part(T; L)  ~ L 2 - a Y ( a t L  l/~) (1.5) 

where Y is a universal scaling function. The corresponding background 
term is expected to be of the general form given by Eq. (1.2) (with ~ba---0 ) 
and so, when d passes through d =  3, one resonant logarithmic term could 
appear, i.e., one could expect (11) 

T d = 3 ( T ; L ) = L  l ~ y ( a t L 1 / ~ ) + c o l n L ] + ~ 2 ( t ) / L + q b ~ ( t ) / L 2 +  . . .  (1.6) 

Here the new scaling function "~ and the amplitude co are supposed to be 
universal, whereas the metric factor a is nonuniversal. To derive Eq. (1.6), 
the same mechanism (as for the free energy density) of the emergence of the 
logarithmic contributions is supposed to work here, i.e., as d--* 3, poles 
develop in q~z(t) and in the scaling function Y conspiring to yield the new 
logarithmic term at d =  3. Since the L dependence has to drop out in the 
thermodynamic limit, we immediately obtain the leading asymptotic term 
of the scaling function Y for large negative arguments, 

~ ( x ~  - ~ ) ~ y  ~ rxl v (1.7) 

where y oo is a universal amplitude. Actually, in the original formulation 
due to Privman (11) it is supposed that 

Y(x--+ --oo)--- y_oo IxlV-vco In ]xl +O(1)  (1.8) 
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and so, when t<O  and tL~/~--* - ~ ,  

vcoln It[ + 0 ( 1 )  
Y ~ -  y _ ~ a  v Itl v (1.9) 

L 

Expressions similar to (1.8) and (1.9) are supposed to hold when t > 0 and 
L ~ o% but with y~  ---0. We would like to mention that only the presence 
of the first term on the right-hand side of Eq. (1.8) is necessary in order to 
keep the agreement with the thermodynamic behavior of ]c when t ~ 0 - .  
The next two terms follow from the tacit assumption that the behavior of 
]c away from Tc will be given by the expression similar to that on the right- 
hand side of Eq. (1.2) [but, of course, with 4 d ( t ) = 0  for t > 0 ] ,  i.e., no 
logarithmic term will present away from Tc. As we have seen above, this 
is not true for the interfacial free energy (7) (t < 0) and a precaution to treat 
the case of systems with "soft" modes and below T c more carefully was first 
stated in ref. 2. 

Finally, we would like to mention that in the case of superfluids 
(n =2 ,  d =  3) the helicity modulus )'-is proportional (12) to the superfluid 
density fraction p [ p =  (re~h) 2 It(T), where m is the mass of the helium 
atom] and is directly measurable (for experiments measuring p for 4He in 
confined geometries see refs. t3 and 14). In fact, the new finite-size correc- 
tions to the behavior of the helicity modulus were proposed by Privman in 
an attempt to improve the fit of the experimental data/H) But it turns out 
that the overall fit of the data is improved only in a limited way, (m 
provided one insists on the bulk value of v in the scaling combination 
a t L  1Iv (the scaling "data collapse" technique works well if one takes v as an 
adjustable parameter which is not necessarily equal to the correlation 
length exponent). It also should be emphasized that one could expect addi- 
tional complexity in the behavior of the finite-size scaling function of the 
helicity modulus in the case of superfluid transitions in a film geometry; 
nevertheless, the analysis of the experimental data shows no clear 
singularities or a jump in the finite-size scaling function. (13'~4) 

Summarizing, it seems desirable to investigate in more detail the finite- 
size behavior of the helicity modulus. The author is not aware of any 
theoretical check of the new finite-size scaling predictions about the 
existence of the logarithmic term in the behavior of the helicity modulus. 
This work is an attempt to elucidate the situation in the framework of an 
exatly soluble model, namely in the mean spherical model. 

The paper is organized as follows. In Section 2 we give a definition 
of the helicity modulus in a finite system under different boundary condi- 
tions and in Section 3 we present convenient starting expressions for its 
investigation in the framework of the mean spherical model. The method 
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of analysis of the helicity modulus and of the mean spherical constraint for 
a large, but finite system in two critical regimes, as well as below and above 
the critical temperature, is described in Section 4. The results for the 
asymptotic behavior of the solution of the mean spherical constraint, for 
the scaling function of )r, and for the corresponding logarithmic corrections 
are obtained in Section 5. The paper closes with a discussion in Section 6. 

2. D E F I N I T I O N  OF T H E  H E L I C I T Y  M O D U L U S  IN A F IN ITE 
S Y S T E M  

The concept of the helicity modulus was introduced by Fisher et al. ~12) 
Fundamentally, the helicity modulus is a measure of the response of the 
system to a helical or "phase-twisting" field. Alternatively, for an isotropic 
system with n-component order parameter (n ~> 2), one can consider the 
helicity modulus to be the analogy of the surface tension or interfacial 
free energy between two phases in a system with a scalar (n=  1) order 
parameter (e.g., an Ising model). 

Let us consider a d-dimensional O(n)-symmetric order parameter 
system with a geometry L 1 x L 2 x ... x L d and boundary conditions z i 
imposed across the direction Li (i = 1 ..... d). Then, following ref. 12, we can 
rewrite the usual definition of Y in the form 

~(T)= lim L~ /~ ~-7{ lim -.. lim [f ,o(T;L)- f ,p(T;L)]}  (2.1) 
o ~  L 2 ~ o v  L d  ~ c ~  

where f l=  (kBT) -~, L = ( L 1  ..... La), f~(T; L) is the free energy density of 
the system with boundary conditions ~ = {vl,..., Zd}, and % and tp are sets 
of boundary conditions, which differ from each other only in that the 
periodic boundary conditions applied across the direction L~ in rp are 
replaced with antiperiodic ones in %. Keeping the meaning of the helicity 
modulus as a quantity associated with the free energy increase due to the 
order parameter orientational gradients, (~1) it seems reasonable to define 
the helicity modulus in a finite system /~,,(T;L) using the following 
straightforward extension of the "bulk" definition given by Eq. (2.1): 

2L~ 
F~,(T; L)=~-s [f~o(T; L ) - f , , ( T ;  L)]  (2.2) 

where ~ ' -  x\{Zl}. 
Note that even in the defining equation (2.1) of it(T) [where F(T) is 

supposed to be independent of the boundary conditions ~'] the properties 
of the free energy density of two finite systems (with periodic and 

822/73/1-2-18 
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antiperiodic boundary conditions across one of the axes) are essentially 
used. The definition given by Eq. (2.1) has been employed to calculate the 
helicity modulus for the spherical model ~15) and for the ideal Bose gas. (16) 
Using (+ ,  - )  and (+ ,  + )  boundary conditions instead of antiperiodic 
and periodic ones [or, of course, (+ ,  - )  and ( - ,  - ) ] ,  an alternative 
definition of ~ is possible (see ref. 12 for more details). Then its extension 
to a finite system [in a way similar to the one used in (2.2)] will lead to 
another definition ~,,(T; L) of the helicity modulus in finite systems. While 
for ~(T) it is believed that it will not depend on the boundary conditions, 
using any of these definitions, for the corresponding finite-size quantities 
]c~,(T; L) and Y,,(T; L) this obviously will not be true. Furthermore, it is 
not clear a priori that ~,,(T; L) and 7-~,(T; L) will have (if at all) the same 
logarithmic corrections. Note, for example, that if the boundary conditions 
of the (+ ,  + )  type are imposed in one direction of the system with 
otherwise free or fixed boundary conditions, this system will have corners, 
which are another possible source of logarithmic corrections ~2) [the 
logarithmic corrections stemming from corners of the corresponding system 
with (+ ,  - )  boundary conditions may then well differ from those ones of 
the "( +,  + )" system and so additional logarithmic corrections due to 
corners could appear in ~ , (T;  L)].  Finally, it should be emphasized that 
while antiperiodic boundary conditions will create a diffuse interface whose 
mean position is not fixed ("floating periodic diffuse interface"), the 
( + ,  - ) ones will fix it in the middle of the direction across which they are 
imposed. As is shown in ref. 7, for the interracial free energy the universal 
constant multiplying the logarithmic correction terms could depend also on 
such features of the system. 

So, different extensions of the "bulk" definition (2.1) of the helicity 
modulus are possible. Generally speaking they will lead to different finite- 
size corrections. It seems that (2.2) represent one reasonable variant of such 
a definition. 

In what follows we will use the expression (2.2) as a definition of the 
helicity modulus in a finite system. According to this definition, the helicity 
modulus in a finite system is a measure of the increase of the free energy 
of an O(n) system due to the order parameter orientational gradient 
created by antiperiodic boundary conditions. 

3, T H E  M O D E L  

We consider the ferromagnetic mean spherical model (see, e.g., refs. 15 
and 17) on a fully finite d-dimensional hypercubic lattice Aa~ 77a of ]AI 
sites and with block geometry Li x L2 • -.. x Ld, where L i, i=  1,..., d, are 
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measured in units of the lattice spacing. The Hamiltonian has the form (in 
the absence of an external field) 

i , j~A i~d  

Here a~e ~, iEAd [a~--a(r~)] is a variable, describing the spin on lattice 
site i (at r~), s is the spherical field, K is a dimensionless coupling, and J~ 
is a matrix with dimensionless elements, so that (K/fi)J~ is the exchange 
energy between the spins at sites i and j (of course, J~=J}~). The 
dependence on the boundary condition is denoted by a superscript ~. 

In the mean spherical ensemble the partition function is given by 

Z(dr)(K, s; L) = f~-.-fLq icI~A da' expl- - - f l~({crs} '~A)]  (3.2) 

Then the canonical free energy [-in units of (kB T) -1]  F~*)(K; L) is defined 
by the Legendre transformation 

F(')tY" L) = sup [ - In Z~a*I(K, s; L) - s IAI ] (3.3) 
s 

Let us now suppose that periodic boundary conditions are applied in 
the "first" dp directions L~, i =  1 ..... dp (dp ~>0), antiperiodic ones in the 
next do directions L~, i= dp + 1 ..... dp + do(d, ~> 0), free in the following do 
directions L~, i = dp + d, + 1,..., d; + d~ + do(d o ~> 0), and fixed in the 
remainder dl(d 1 = d -  dp - do - do, dl/> 0) directions. Under the considered 
set of boundary conditions and for nearest neighbor interaction (J,~ = 1 if 
i and j are nearest neighbors under the applied set of boundary conditions, 
and zero otherwise) the eigenvalues Y(~)(k) of the matrix J~ are well known 
(see, e.g., ref. 7) 

Y*) (k ) -  Y(k I dp, d a, do, dl ) 

= 2  ~ cos + 2  ~' 
i = l  i=dp+l  

+ 2 ~ cos 
i=++d~+l k L ~ )  

(lr(2ki + 1)) cos \ y, 

Z cos (3.4) 
i=ap+G+ao+l \ L i+  l J 

where k -  ( k  1 .. . . .  ka); k i=  0,..., L i -  1; i =  1,..., d. 
It is convenient to replace the spherical field s by another field 2 ~), 

defined as 

2 (~) = 2 s / K -  Y ~ x  (3.5) 
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where Y(~),x =maxk Y~i(k). As it is clear from (3.4), due to the presence of 
antiperiodic boundary conditions the maximal eigenvalue of the matrix Jr. tj 
is 2d~ degenerate. 

Performing now the integration in (3.3), we obtain 

1_ F~I(K) =_fCf(K) fAl 

-- sup ln[2(*) + A(~)(k)] - ~ 2(*)K 
Z(*) 

1 [ln K -(,) ] 
+ -2 k--~-n - KJr~a~ (3.6) 

where f(A')(K)is the free energy density and A(')(k)= Y~)a~- Y(')(k). Using 
the identity 

ln(a+b)=lna+ --exp(-ax)[1-exp(-bx)], a>0 ,  b > - a  (3.7) 
X 

we can rewrite Eq. (3.6) (after some manipulations) in the equivalent form 

{ f~*)(K)=sup ~dx exp(_x)_exp(_2(,)x)l_~ exp[_zl(,l(k)x]} 
2(~) X 

[In K KY~)ax I (3.8) -~  ;r + ~ L-~-~- ~ - 
In the remainder, if not stated otherwise, we will consider only the case 
of a system with a fully finite hypercubic geometry, i.e., when Le = L, 
i=  1 ..... d. From Eq. (3.8), for such a system, we get the following represen- 
tation for the free energy density: 

f~*)(K) = fL(Kldp, d., do, d,) 

(l f? dX {exp(-x)-~A[ exp(-2(*'x)[Sf(x)]d" =sup g y 

lClnK 2K( d z z )3 + 2 L  2re \ p+daCOS--s ~ (3.9) 

where L I [  ( 
Sly(x)= ~ exp --2x 1 - c o s  (3.10) 

k = 0  
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I S~(x)=k=oeXp --2x cos~--cos L (3.11) 

L 1  o Xpl cos )l 
exp - 2 x  c o s ~ - c o s  L + I  

/ g O =  

It is easy to show that the above lattice sums fulfill the following relation- 
ships: 

S~(x)=exp2x(1-COSL)[SfL(x)-S~(x)-I  (3.14) 

and 

S~(x)--exp2x 1 - c o s ~ - -  i- [ S ~  (3.15) 

The supremum on the right-hand side of Eq. (3.9) is attained at a 
value 2 (~) = 2(K; L ld~, da, do, d~), which is determined by 

~-~1 fo  dx exp( _ 2(~)x)[S pL(x) ] d, [sac(x)]ao [SO(x)]a0 [S~(x)]al = K (3.16) 

Employing now the definition in Eq. (2.1 ) of the helicity modulus in a 
finite system, we therefore obtain 

fll'(~)(K; L) = -~ fll"-(K; L ldp, da, do, d~) 

L 2 
=--~ [fL(Kldp, d,. do, dl)-fL(Kldp+ 1, d~-  1, do, dl)] 

(3.17) 

which, by using Eq. (3.9), becomes 

1 
5 flr(K; Li dp, d~, do, d~) 

_ L-(a-2) 2 dXx [S~(x)]aP [S~(x)]aa-1 [SO(x)]d~ ES~(x)]a~ 

• [exp(-2px) SP(x)-  exp(-2ax) S~(x)] 

2r~2 (2a- 2p) K + K-~ 1--cos (3.18) 
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Here 2p -= 2(K; L[dp + 1, d~- 1, do, d~) and 2a - 2(/(; L[dp, do, do, dl) are 
the solutions of the corresponding equations for the spherical field 
[Eq. (3.16)] for a system with dp+ 1 periodic and d o -  1 antiperiodic 
boundary conditions and for a system with dp periodic and d o antiperiodic 
boundary conditions, respectively (do~> 1). In accordance with Eq. (3.16) 
this implies that the first partial derivatives of the right-hand side of 
Eq. (3.18) with respect to ).p and ).o have to be zero. 

Equations (3.9)-(3.18) provide the basis of our further analysis. 

4. T H E  M E T H O D  

From the mathematical point of view the main problem which has to 
be solved is the evaluation of the integral on the right-hand side of 
Eq. (3.18) for L>> 1. To achieve this we will employ the method first 
proposed by Shapiro and Rudnick, (~8) who used it to investigate the finite- 
size properties of a fully finite d-dimensional spherical model with periodic 
boundary conditions. So, we divide the integral over x in Eq. (3.18) 
into two integrals--the first one from 0 to L 2 [let us denote it by 
P(2 o, ~.p, L[dp, do, do, dl)],  i.e., 

P(2o, 2p, L I dp, do, do, dl) 

f~3 [SP(x)I dp [SaL(X) lda-1 [S~ dO 
L-(d 2) dx 

-= 2~ 2 X 

x [-S~L(X)] d~ [exp(--2pX) SP(x)--exp(-2ox) S~(x)] (4.1) 

and the second one from L 2 to oo [-it will be denoted by 
Q()~, )>, L]dp, d~, do, d~)], i.e., 

Q(2o, 2p, Lid p, do, do, d~) 

L (d-2) f~o dx__ [SP(x)]d p [S~(x)]do_ , [SO(x)]d ~ 
2a: 2 2 x 

11 dl x [S L (x)] [exp(-)~pX) SP(x)-exp(-)~ox) S~(x)] (4.2) 

First we evaluate the integral in Eq. (4.2). For L sufficiently large, due 
to the rapid convergence of the sums (3.t0) (3.13) we can use the quadratic 
approximation of cos z around z = 0. Proceeding in this way, we obtain the 
following asymptotic behavior of the lattice sums SP(x) and SOL(x) (more 
technical details can be found in ref. 10): 

Sly(x)= 1 +2R1 - -~x --Lv(x)+(9(exp(-const.x)) (4.3) 
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and 

where 

and 

S°(x)  = 1 + R 1 ~ x - Lv(x) + (9(exp(-const-x)) (4.4) 

and 

where 

V ( X )  ~--- ( 4 ~ X )  - 1/2 ]- 1 - -  erf(rcxl/2)] (4.6) 

The corresponding expressions for S~(x) and S1L(x) follow from 
Eqs. (4.3) and (4.4) and from the exact relations given by Eqs. (3.14) and 
(3.15). For convenience and in order to introduce some notations we give 
the final results below: 

SaL(X)=2+2R4 --~x - g v ( x ) + ( 9 ( e x p ( - c o n s t . x ) )  (4.7) 

and 

S~(x) = 1 + R2 \ ( L  + i ) 2 / -  Lv(x) + d0(exp(-const, x)) (4.8) 

R2(x) = ~ e x p [ - x ( q  2 -  1)] (4.9) 
q = 2  

R4(x ) = ~ e x p [ - 4 x q ( q +  1)] (4.10) 
q = l  

Now, inserting the asymptotic expressions in Eqs. (4.3), (4.4), (4.7), 
and (4.8) into Eq. (4.2) and changing the integration variable, we get 

Q(2a, 2,, Lldp, d~, do, dr) 

= 2aa 2 L ~2(u 2) fl ~ __dXx {1 + 2Rl(4rc2x)4 [1 + R4(~2x)] d"- [ 

× [1 ÷ Rl(~2x)] a° [-1 + Rz(~2x)] d' } 

x {exp( --ypX)[1 + 2Rl(4rcZx)] - 2 exp(--yax)[1 + R4(g2x)] } 

+ (9(exp(-const .L2); L -~a-l) exp( -yp);  L (a-l) exp(-Ya)) 

(4.11) 

R1(x)= ~ exp( -xq  2) (4.5) 
q = l  
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which can be rewritten in the following form, which is more convenient for 
further investigations: 

Q()~a, )~p, L ldp, da, do, d~) 
L-(d 2) 

: 2 d ~  - 2  - -  n2 [ -Ei ( -yp)  + 2 Ei(-yo)] 

L-(d 2) 
+ n2 [g(y~[dp, d~,do, dl)-g(yp]dp+l,  da - l ,  do, d,)] 

+ (9(exp(-const- L2; L (d- 1) exp(--yp); L ~d- ~) exp(--y~)) 

(4.12) 

where 

yp ~ ApL 2 (4.13) 

Ya = 2~L? (4.14) 

Ei(x) is the exponential-integral function (19) and 

g(yl dp, da, do, dl) 

= _2aa_ 1 ~ dx exp( -yx){  [1 + 2Rl(4n2x)] ap [1 + Rl(n2x)] a~ 
J1  x 

x [1 + R2(n2x)] a~ [1 + R4(n2x)] a~ 1 } (4.15) 

It is clear from Eq. (4.15) that g(yl . )  is an analytic function in y; its 
asymptotic behavior for y ~> 1 is g(Yl" ) ~ exp( - cons t .  y). 

Let us now consider Eq. (4.1). In this case the appropriate asymptotic 
behavior of the lattice sums S~(x) and S~ can be obtained by using a 
technique similar to the one employed by Shapiro and Rudnick (~8) [see 
Eq. (42) in ref. 18]. The corresponding results are (see also ref. 10): 

SP(x) ~ Le 2Xlo(2X ) + ~  Rp (4.16) 

and 

L e4X, S~ 2 X I o ( 2 X ) + ~ R  1 + ~ ( 1 -  (4.17) 

where Rp(x)= Rl(X/4). The expressions for S~(x) and S~(x) follow from 
the above and the exact relationships given in Eqs. (3.14) and (3.15): 

S~(x)~-e 2x 1 - c o s  L e - Z X I o ( 2 X ) + ~ R .  (4.18) 
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and 

L ( x )  --- 1 - c o s  

x ( L + l ) e - 2 X I o ( 2 X ) + ~ R l  x 

- l ( l + e 2  4x)] (4.19) 

where Ro(x) = 2Rl(x) - Rl(x/4). Now we have to evaluate the contributions 
in Eq. (4.1) stemming from the different products of terms which enter into 
the right-hand sides of Eqs. (4.16)-(4.19). The following observations 
greatly simplify our task. First, due to the exponential convergence for 
x < L 2 of the "R"-functions [i.e., of Rp, R~, and R 1 in Eqs. (4.16)-(4.19)], in 
all products which contain at least one R-function and Io(x ), we can use the 
asymptotic form of Io(x) for x >> 1. Second, in all products which in addition 
to at least one R-function also contain terms [ 1 - e x p ( - 4 x ) ] / 2  and/or 
[ - l + e x p ( - 4 x ) ] / 2 ,  we can neglect the term e x p ( - 4 x ) ,  because it will 
produce contributions exponentially small in L. Proceeding in this way, we 
obtain 

P( &, ~.~, L I d~, do, do, dl ) 
L-(d-2)  

- To2 [~(f~a]dp, d~,do, d~)-t~(f~pl@+l, do, dl)] 

x [1 +C(d~L 1 ) + ( 9 ( L - 2 ) ]  

E 
m=O.=Ok=Op=O m n k p 

x ( -1 ) "+P  ( 2 L ) ( ' + " )  (1 + L 1)dl--n 

x [ f a  . . . .  (~o + 4(k + p), L 2) - f a  . . . .  (~p + 4(k + p), L2)] (4.20) 

where 

~p = 2p - -  2(da - 1) 1 - cos - 2dl 1 - cos 

p , = z , L ,  p~ ~oL 2 

(4.21) 

(4.22) 

(4.23) 
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In Eq. (4.20) the functions 

O(yld~, clo, do, a,) 

1 _a/2fjdx - =  - - - -  ~ x - - d / 2 e  y x  

2 x 

+ , + i x),J2]do 

X ( )  (rC~1/2) al} (4.24) 

collect all the contributions stemming from products which contain at least 
one R-function, and the remaining ones are given by the f-functions 

fd(2, x)= t (e '--e-a')[e-2tlo(2t)]a (4.25) 

Up to now we have not specified the value of the space dimensions d. 
So, the results obtained above are quite general. Since our main interest is 
concentrated on the predictions made for the case d - 3 ,  in the remainder 
we will consider only three-dimensional systems. 

From Eq. (4.24) it is clear that ~P(YI') is an analytic function in y and 
it can be easily shown that its asymptotic behavior for y >> 1 is given by 
r  y(d--1)/4 exp(_ x//-f). The properties of the f-functions are derived 
in the Appendix. Here, for convenience, we will state only the final results: 

(i) F o r x ~ o % 2 ~ 0 w i t h 2 x ~ o o w e g e t  

1 1 
f3(2, X) ----- f3 4- ~ g~2 - ~ 43/2 Jl- (9(2 2, exp( - 2x)) (4.26) 

f2(2, x )=f2+-~- f z (51n2+l )2 -  21n2 

+ (9(42 In 4, exp( -  2x)) (4.27) 

f1(2, x) = f l  + ~ )ou2 _ 43/2 + (9(45/2, exp(-2x))  (4.28) 

where fd = fd (0, oo ), d = 1, 2, 3, are constants. 



Finite-Size Dependence of Helicity Modulus 281 

(ii) For 2--*0, x ~  oo with 2 x = C ( l ) ,  or 2x-~0,  we obtain 

1 1 ( -  1)k (,~x)~ 
f3(2, x) = f3 + ~ K~2 + ~ (4n)-3/2 2x-1/2 ~ (k + 1)! (k - 1/2) 

k=0  

1 + ~ (4re) 3/2 X 3/2 _[_ ~()12 ,~X--3/2 X 5/2) 

f2(2, x ) = f 2 + ~ n 2 1 n x + c 2 2 +  2 ~ ( - 1 ) k ( 2 x ) ~  

4_~_~x-l+o()Zlnx, x 2) 

( -  1 )~ (2xF 
f1(2, x) = f l  + c12 + ~ (4re)-1/2 )oxl/2 ~ (k + 1)! (k + 1/2) 

k=O 

(4.29) 

(4.30) 

1 + ~ ( 4 ~ )  1/2x 1/2+C(22, Zx 1/2) (4.31) 

where cl and c2 are constants which will be not specified here. 
Now we can turn to the investigation of the finite-size behavior of the 

helicity modulus given in Eq. (3.18). 

5. F INITE-SIZE BEHAVIOR OF THE HELICITY M O D U L U S  

According to Eqs. (4.2) and (4.l), the corresponding expression in 
Eq. (3.18) for the helicity modulus can be written as 

1 
~/~r(K; LId~, do, do, d~) 

= P(2a, 2p, L] dp, do, do, dj) + Q(2 a, 2p, L t dp, d o, do, dl ) 

2~zz(2~-2p) K + K ~ - ~  1 - c o s  (5.1) 

First let us consider the case when )~L 2 = (~(1) or 2L 2 -~ 0 as 2 ~ 0 and 
L ~ ~ ,  where 2 is either )~p o r  '~a" Note that in this regime also ~L2= (9(1) 
or ~L2--* 0 as L--* oo [see Eqs. (4.21) and (4.23)], where .~ is equal to ~p 
or ~a- Then the insertion into Eq. (5.1) of the results for the asymptotic 
behavior of P(2.a, 2p, Lldp, d~, do, dl) and Q(2a, 2p, L]dp, do, do, d~), 
given by Eqs. (4.12) and (4.20), respectively, directly leads to the following 
final expression for the helicity modulus: 
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1 
5/~r(K; LIG, do, G, d~) 

= rc 2L- l ( [O(Yo ldp ,  da, do, d l ) - ~ 9 ( ~ p l d p + l , d - l ,  do, di) ] 

+ [g(y~]dp, do, do, d , ) -  g(yp[dp+ 1, d a -  1, do, d,)] 

+~{[f3(37a)-y3(fp)] 1 d +$( o-a,)EY2(~at-f2(~)] 

+ ~ [ -  dodm + (d2')-k-(~°)] [?~(Ya) -- ?,(ffp)] } 
+ 2 a° 2[2 Ei(-yo) -- Ei(-yp)]  

l [Kc + 4_~ (do ) T + - - L  - - -  
+~ (37~-.~p) - d ,  lnL const K ] L )  

d lnL +(9( (d1+ o ) - ~ - , L  2) 

Here Y~(z), i = 1, 2, 3, are analytic functions: 

( _1 )kz~ +  L 
f , ( z )=(4~)  -*/2 (k+-~!-(-~+i-~i/2) ,  i=1 ,3  

k = 0  

)72(z)=(4r0 -1 ~ (--1)kZk+l 
k=l (k+ 1)!k 

and 

(5.2) 

(5.3) 

(5.4) 

const = Kcd a - ½(do + dl) W2(4) + (do - dl) c2 (5.5) 

Now we recall that y~ and 3~p have to satisfy the corresponding spherical 
field equation (3.16), which can be obtained from Eq. (3.18) requiring the 
first partial derivatives with respect to 2a and 2p from the right-hand side 
of Eq. (3.18) to be zero. So, from Eq. (5.2), taking into account the defining 
equations (4.13), (4.14), and (4.21)-(4.23), we obtain the following 
equations for y, and yp, respectively: 

0=~  (Kc.L -- K) L+2ao-~y~ 1 exp(--y~) + analytic function in y~ (5.6) 

for y~ and 

0 = ½(Kc, c -- K) L + 2 a"- 2ypl exp(-yp) + analytic function in yp (5.7) 
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for yp, where we have introduced a shifted critical coupling 

Kc L = Kc + l  (do - d l )  ln__L_L (5.8) 
' 47z L 

Therefore, if (Kc, L -  K) L =  (9(1), the solutions of Eqs. (5.6) and (5.7) are 
y ,  = (9(1) and yp = - ( 9 ( 1 ) ,  which is in agreement with the assumptions under 
which Eq. (5.2) was derived. Turning to the behavior of the helicity 
modulus, the results obtained above imply that in the considered regime: 

(i) /'-(K; L Idp, da, do, di) is a function of the single scaling variable 
(Kc, L - K ) L  1Iv (v= 1 for d = 3  in the spherical model(173). The corre- 
sponding scaling function is given by the right-hand side of Eq. (5.2), where 
Ya and yp obey the equation for the spherical field of the system with the 
considered set of boundary conditions. 

(ii) There are no log(L) corrections in the finite-size behavior of 
r(K; L[.),  

Let us now consider the temperature region for which 
(Kc, L - K )  L ~ - ~  as L -o ~ .  From Eqs. (5.6) and (5.7) it follows that Ya 
and yp then tend to zero: 

y~-~ = 2 a~ L+consta (5.9) 

and 

yp ~ = 2 - ~do- 1)(K_ Kc, L) L + const e (5.10) 

where consta and constp are constants depending on the boundary condi- 
tions, which will not be specified here. Hence, from Eq. (5.2), we obtain for 
the helicity modulus 

2da-I 
fir(K; L ldp, d~, do, dl ) = ( K -  K~,L) -- ~ l n [ ( K -  K~,L) L] 

-'[- (9(L 1) (5.11) 

Taking into account that for do>~dl due to (K~,L-K)L---, - ~  one has 
( K ~ - K ) L ~ - ~  and K - K ~ > > ( d o - d l ) l n L / 4 n L  , we can rewrite the 
above equation as 

1 2d~ In L 
fl2"-(K;L]dp, d~,do, d l ) = ( K - K ~ ) -  ~ ( d o - d l ) + ~ J  L 

2u"-l/~ 2 l n ( K -  K~) + (9(1) 
L (5.12) 

From this equation it is clear that: 
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(i) In the limit L ~ oo we obtain the well-known expression for the 
bulk helicity modulus (see, e.g., ref. 15) 

/~r(K) = K -  Kc (5.13) 

which is, as expected, independent of the boundary conditions. 

(ii) Below the critical temperature [-more precisely, for (K-Kc)L  
>> In L],  there are logarithmic corrections in the finite-size behavior of the 

helicity modulus. These logarithmic contributions have two sources: (a) the 
lowest eigenvalue modes, which lead to the term 2 a~ In L/rc2L, and 
(b) the presence of real surfaces in the reference systems [i.e., in the systems 
whose properties are used in the defining equation (2.2) of the helicity 
modulus]. 

It is well known that the three-dimensional spherical model under 
(in our terminology) fixed boundary conditions is characterized by a 
logarithmic shift of the critical temperature, which is one of the peculiarities 
of the model for boundary conditions with real surfaces (see, e.g., refs. 15 
and 21). Here we see that the sign of this shift depends on the type of the 
boundary conditions used to model the free surfaces. 

Let us now investigate the case when (Kc, L - K) L ~ - ov but do < dl. 
Considering the different possibilities, we get: 

(i) If, as before, K -  Kc >> (d~ - do) In L/4gL, the finite-size behavior 
of r will again be given by Eq. (5.12). 

(ii) If K - K c ~ < ( d l - d o ) l n L / 4 r ~ L  [-note that this covers, for 
example, the region in which ( K - K c ) L  = (9(1)], instead of Eq. (5.12) we 
obtain from Eq. (5.11) 

2 d~ ln[(dl  - do)in L]  + (9(1) 
fir(K; L Idp, d~, do, d~) =- K -  K~ L (5.14) 

So, if do < dl, the appearance of the log(log(L)) corrections is possible in 
the bulk critical region [i.e., for L(K-Kc)= (9(1)]. The inspection of the 
Eq. (5.11) also shows that this can occur if and only if both sources of 
logarithmic corrections mentioned above are present in the system. 

Up to now we have considered the cases when (Kc.L-K)L=(9(1) 
and when ( K c . L - K ) L ~ - o o .  Let us now consider the remaining case 
(Kc, L - K ) L ~  oo. It is clear that Eqs. (5.6) and (5.7) then have no solu- 
tions satisfying the assumptions under which they are derived. This simply 
means that in this case we have to look for solutions y~ and yp of the type 
y ,  >> 1 and yp >> 1. Inserting the asymptotic expressions in Eqs. (4.26)-(4.28) 
into Eq. (4.20) and taking into account the asymptotic behavior of the 
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functions O(YI' ) ~ y(a- 1)/4 e x p ( - x / Y )  and g(y[. ) ~ exp( - const �9 y) for 
y>> 1, we obtain from Eqs. (3.18), (4.12), and (4.12) that up to functions 
which are exponentially small in XfY (where y is either Ya or yp), the 
corresponding expression for l- is a function symmetric in Ya and yp. This 
implies that the same is true for the spherical field equations which can be 
obtained by the vanishing of the first partial derivatives of this expression 
with respect to Ya and yp. Hence, the difference between y ,  and yp will be 
exponentially small. Turning now to the finite-size helicity modulus and 
summarizing the above, we obtain 

ill-(K; L[. ) ~ exp( - c o n s t .  x/Y) (5.15) 

where y is the solution of one of the equations of the spherical field. 
Finally we have to determine the leading-order solution of this equation. 
Proceeding as explained above, we derive the following explicit form of the 
equation for the spherical field: 

1 )71/2 1 (Kc, L - K ) L - - ~  - ~-r~ ( d o -  dl) In y + (9(1) = 0 (5.16) 

Substituting the leading-order solution of the above equation into 
Eq. (5.15), we finally get 

fll-(K;Llda, dp, do, d l ) , ,~exp[-const . (Kc.L-K)L] (5.17) 

Hence, (i) for all temperatures T >  Tc (i:e., K <  Kc) the helicity modulus 
tends to zero exponentially; (ii) in the critical region ( K c - K ) L  = (9(1) of 
the bulk critical point Kc [but  when (Kc, L-K)L--*o% and so d o > d l ]  
this approach is algebraic in L. 

Note that if K <  Kc, the finite-size corrections to the bulk free energy 
are of the order of L-1  in the presence of surfaces (i.e., if do + dl > 0; see, 
e.g., refs. 15, 21, and 3) and are exponentially small only under periodic 
and/or antiperiodic boundary conditions (see, e.g., refs. 15, 22, and 23). 
This, in turn, means that above the critical point all the finite-size correc- 
tions to the bulk free energies of both systems (used in the definition of the 
helicity modulus) are equal to each other up to terms exponentially small 
in L. 

In the remainder of this section we will consider the behavior of the 
helicity modulus if only antiperiodic and/or periodic boundary conditions 
are imposed, i.e., the case d l = d o = 0 .  We consider the geometry 
L 3 d' X oO d'. Taking into account that 

l 
lim S~L(X) = exp(--2x)  Io(2X) (5.18) 

L--~ ~ Z 
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where T denotes any of the boundary conditions under consideration, and 
using the expression in Eq. (3.9) for the free energy of the system, instead 
of Eq. (3.18) we obtain the following equation for the helicity modulus of 
the system: 

i fll~<d,)(K; L ldp, da) 
2 

L 2 a+d'[~ dx [e_Z,io(2X)]a: [S~z(x)]ao_ , [SP(x)]U " 
- 2n 2 Jo x 

L 2 
x [ e - 4 x S f ] x )  - e-X~ - ~ K(ia - ~,) (5.19) 

where dp + da + d' = 3 and all the other symbols have the same meaning as 
before. This relation can be treated further in the same fashion as in the 
case of a fully finite geometry. Here we skip completely the intermediate 
calculations and present only the final expression: 

�89 Lldp,  da) 

= n -2L-~{[gd , ( yo ldp ,  < ) -  gd.(ypldp+ I, d~- 1)] 

+ [~d,(ffaldp, da) -~ ld , (yp ldp+ 1, d a -  1)] 
+ 2a.- d' - 2~ - d'12 [ ydp'12F( _ d'/2, yp) - 2y d'nF( _ d'/2, y~) ] 

+ �89 - K )  L ] ( Y a  - Yp) + �89 ]-L (J~a) -- J~3(fip)] } (5.20) 

where 

g < / y l d  I .  d.) 

2a~-d'-l fl~176 dx 
- -- x-a'12{ [1 + R4(~Zx)] a~ 

7C d'12 X 

• [1 +2Rl(4n2x)]  4 -  1} e -y* (5.2l) 

and 

1 

fO --X-- Ix" Oa,(yldp> da)= - - ( 2 d ' + l X d / 2 )  - 1  d x  d .  
X 

(5.22) 
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Here it is supposed that Ya and yp are of the order of unity or tend to zero. 
Starting from the equation above and proceeding in the same manner as 
for the case considered previously, we now obtain: 

(i) If (K, .--K)L= (.0(1), i.e., in the bulk critical region, the behavior 
of the helicity modulus is given by a function of the scaling variable 
( K c -  K ) L ~  ( T - T ~ ) L  with no log(L) finite-size correction terms. This is 
true for fully finite, film ( d ' =  2) and cylinder geometry ( d ' =  1). 

(ii) If (Kc - K) L --+ -oo ,  i.e., below the critical temperature, and up 
to the leading-order terms, the corresponding equations for the spherical 
field for d ' =  1 and d ' = 2  are [-for d ' = 0  see Eqs. (5.9) and (5.10) with Kc, r 
replaced from K~ in them]: 

(a) For d ' = l  

J'2d~- 2y~-*/2 + 0(1) for yo (5.23) 
�89 L=[2a~ for yp 

and (b) for d ' =  2 

1 ~-s In y~ + (9(1) for y~ 
- (K-Kc)  L= (5.24) 
2 ~-~lnyp+(9(1) for yp 

Substituting the solutions of these equations into Eq. (5.20) yields 

�89 da)=K-Kc+(9(1)/L,  a ' = l ,  2 (5.25) 

Hence, if in the geometry of the system there is at least one infinite 
dimension and only antiperiodic and/or periodic boundary conditions are 
imposed, there are no logarithmic finite-size corrections in the behavior of 
the helicity modulus, not in the bulk critical region nor below To. For the 
temperatures above the critical one it is easy to see that the helicity 
modulus in this case tends to zero exponentially as in the previously 
considered case of a fully finite geometry. 

6. D I S C U S S I O N  

In the present paper the finite-size behavior of the helicity modulus has 
been investigated in the framework of the three-dimensional mean spherical 
model. The helicity modulus in a finite system is defined as a straight- 
forward extension of the corresponding "bulk" definition [see Eq. (2.1)] 
due to Fisher et al. (12) It is proportional to the increase of the free energy 
of an O(n) finite system due to the order parameter orientational gradients 

822/73/1-2-19 
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created when the periodic boundary conditions imposed across one direc- 
tion of the system are changed to antiperiodic ones [see Eq. (2.2)]. 

As is well known, the infinite translational-invariant spherical model is 
equivalent to the n ~ oo limit of such an n-component system,/24'25) but the 
spherical model of a system with free surfaces (or more generally without 
translational invariance symmetry) is in fact not such a limit (to restore the 
equivalence we have to consider a modification of the spherical model with 
a distinct spherical field applied to each layer parallel to any of the sur- 
faces(26); unfortunately, this version of the model is rather untractable). 
Nevertheless, the spherical model with free surfaces was extensively 
investigated in the context of the theory of finite-size scaling and surface 
critical phenomena (see for reviews, e.g., ref. 23 and 27). It turns out that 
the finite-size scaling remains valid in terms of a shifted critical coupling 
variable (Kc, L - K )  L, where Kc, L is given by Eq. (5.8). Thus, as far as we 
are interested in the finite-size scaling properties of the helicity modulus, it 
is worthwhile to have, at least for completeness, the corresponding results 
for a spherical model with surfaces, too. 

In the present work two main cases of the geometry of the system and 
applied boundary conditions have been considered: 

(i) The case of a system with fully finite hypercubic geometry with 
dp >~ 0 periodic, da/> 0 antiperiodic, do ~> 0 free, and dl >~ 0 fixed boundary 
conditions (dp + d o + do + dl = 3). 

(ii) The case of a geometry of the system of the type L 3 - d ' x  oo ~' 
with only antiperiodic and/or periodic boundary conditions imposed. 

It is shown that in the critical region ( K - K c ,  L)L = (9(1) of the shifted 
critical point the behavior of the helicity modulus (in both cases) is 
described by a scaling function [see Eqs. (5.2), (5.6), and (5.7) for case (i) 
and the corresponding equations (5.20), (5.23), and (5.24) for case (ii)] 
depending on the scaling variable (Lc, L - K ) L  1Iv (v= 1 for three-dimen- 
sional spherical model), where Kc, L is given by Eq. (5.8) in case (i) and 
Kc, L = K c  for case (ii). In this temperature region no finite-size log(L) 
corrections are found. 

In the critical region of the bulk critical point the finite-size behavior 
of the helicity modulus in case (i) depends on whether d o >~ dl or do < dl: 
in the former subcase the helicity modulus tends to zero algebraically in L, 
whereas in the last case a universal log(log(L)) leading-order term [see 
Eq. (5.14)] 

2ao- 1 ln[(dl  - do) In L]  

~z 2 L 

has been derived. 
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Above the critical temperature the helicity modulus in both cases (i) 
and (ii) tends to zero exponentially in L. 

A universal, logarithmic finite-size term [see Eq. (5.12)] 

I 1 2d'-17 In L 
-- ( d o -  dl) + ~ J  L 

has been found only below the critical temperature (more precisely, when 
K -  Kc >> In L/L) and for the case of a system with a fully finite geometry. 
This term collects logarithmic contributions due to the presence of surfaces 
in the geometry of the system and other ones which stem from the lowest 
eigenvalue modes. In the presence of at least one infinite dimension the last 
logarithmic contributions disappear. It is plausible that due to the presence 
of surfaces logarithmic terms could appear below Tc also in a cylinder 
geometry, but this case has not been investigated here. 

As we have seen, the exact results for the spherical model are not in 
agreement with the finite-size scaling predictions about the existence of 
an additional log(L) correction term in the finite-size dependence of 
the helicity modulus in the critical region of a three-dimensional O(n) 
system. (3) It should be emphasized, however, that different definitions of the 
helicity modulus in a finite system, leading to the same bulk, but different 
finite-size behavior [including also log(L) terms] are possible (for a short 
discussion of this point see Section 2). The present work elucidates only the 
consequences if one of these possibilities is employed. Thus the problem 
needs to be explored further. 

A P P E N D I X .  E X P A N S I O N S  FOR T H E  F U N C T I O N S  fa(h, x) 
In this appendix we consider the asymptotic expansions for 2 ~ 0 and 

x >> 1 of the functions f j(2, x) defined in Eq. (4.25): 

1 ~xdt 
fd(2, x ) = 2 J 0  t (e-  - e  xt)[e-Z'Io(2t)]a (A.I) 

First we investigate the case 2---,0 but x2~> 1. From the above 
definition we immediately obtain 

1 Cx dt 

fa(2, x) = -2 J,o -t- { e - ' - - e -  ~'Ee- 2tlo(2t) ] ~} 

l f f d t  
- 5  t { e - ' - e  'Ee-2'Io(2t)] a} 

= fa(2) - A a + ~9(exp( - 2x)) (A.2) 
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f a (2 )=  t {e - t -e  )~t[e-ZtI°(2t)]a} (A.3) 

and Aa=fd(1) is a constant. Note that [see, e.g., Eq. (52) in ref. 20] 

1 e~ dt  1 
FB(K,) , ) -~  J 0  t { e - ' - e - ~ ' [ e  2'I°(2t)]a}+2 lnK 

1 
= fa(2) + ~ In K (A.4) 

is the bulk (per kBT) free energy density (with 2 determined from the 
corresponding bulk spherical constraint) of the d-dimensional spherical 
model. Employing the asymptotic expansions of the functions FB(K, 2) 
around 2 = 0, from Eqs. (A.2) and (A.4) we obtain the required asymptotic 
representations in Eqs. (4.26)-(4.28) of the functions fa(2, x) for the case 
2 ~ 0 with 2x ~> 1. 

Let us now consider the remaining case when )~x= (9(1) or ) , x ~ 0  as 
) ~ 0  and x ~  ~ .  Starting again from Eq. (A.1), we obtain (for d>~ 1) 

1 f : d t  fa(2, x)=~ t (e-t-1)[e-2tlo(2t)] a 

l f :  dt l f: dt 2 ~ ( e - ' -  1)[e-2tlo(2t)]a+ ~ t (1 -e-~'t)[e-2tlo(2t)] a 

1 f : d t  =fa+~ t [ e  2'Io(t)]d 

+ ~ fo ds f; dt e St[e- 2'Io(2t) ]a + (9(exp(-x)) 

1 =f~-~ ds W~(s,x)+~(4~x)-~/~ +(9(x -"÷~/~) (A.5) 

where 

is a constant and 

l dt fd = -~ t (e-t-- 1)[e-2tI°(2t)Jd (A.6) 

Wd(S, X) = I: dt e-S'[e-Ztlo(2t)] a (A.7) 
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represents a generalization of the Watson functions [see, e.g., Eq. (A4) in 
ref. 15] 

fo Wd(s) = dt e - ' t [ e -2 t lo (2 t ) ]d  (A.8) 

To proceed further we need to evaluate the functions We(s, x). First we 
note that sx = (9(1) or sx ~ 0 as x ~ oo and s e  [0, 2]. Second we divide the 
integration interval over t in Eq. (A.7) into two intervals--the first one 
from 0 to a, where 1 ~ a ~ x is a large positive constant, and the second 
one over the remaining part from a to x. The integration over t in the first 
integral leads to a function which is analytic in s. In the second integral we 
use the asymptotic form of the Bessel function(19)I 0 for large values of its 
argument. Proceeding in this way, we obtain 

ov ~ l ' k  "X ~k 
W3(s, x) = W3(0) + (4re) 3/2 x-1/2 k~o ~" t-k! (kl)--txsF (9(x-3/2" , s) (A.9) 

1 , 1 ~ ( - 1 ) 4 ( x s ) k  . . . .  1 , , 
W2(S , X) = - -  m x + - -  2, - - - -  + c~ + e;tx , s m x)  (A.10) 

4~ 47c k = 1 k! k 

1 xl/2 ~, ( - 1 ) k ( x s )  k 
W l ( s , x ) = i 4 ~ )  m ,.., k ! ( k + l / 2 )  + c l + C ( x - m , s )  (A.11) 

k = 0  

where cl and c2 are constants. Substituting now the above expansions of 
the functions W a ( s , x )  for d = 1 , 2 , 3  into Eq.(A.5), we obtain the 
asymptotic representations in Eqs. (4.29)-(4.30) for the functions f a(2, x) in 
the case 2 x =  (9(1) or 2x--, 0 as 2--*0 and x ~  oo. 
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